organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(*Z*)-(2,5-Dichlorophenyl)iminomethyl]-5-(diethylamino)phenol

Jerry P. Jasinski,^a* Ray J. Butcher,^b B. Narayana,^c M. T. Swamy^d and H. S. Yathirajan^e

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^dDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 098, India, and ^eDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 23 October 2007; accepted 4 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.120; data-to-parameter ratio = 27.2.

In the title molecule, $C_{17}H_{18}Cl_2N_2O$, the angle between the mean planes of the 2,5-dichlorophenylimino and phenol groups is 19.5 (5)°. The two ethyl groups adopt a synclinal conformation. The crystal structure is stabilized by intermolecular π - π stacking interactions between adjacent 2,5-dichlorophenyl rings, the distance between the centroids of interacting rings being 3.860 (8) Å. The molecules are stacked parallel to the *a* axis. In addition, an $O-H\cdots$ N intramolecular hydrogen-bonding interaction between the phenol H atom and imino N atom is observed.

Related literature

For related structures, see: Büyükgüngör *et al.* (2007); Odabaşoğlu *et al.* (2007); Yathirajan *et al.* (2007); Butcher *et al.* (2007). For related literature, see: Hodnett & Dunn (1970); Misra *et al.* (1981); Agarwal *et al.* (1983); Varma *et al.* (1986); Singh & Dash (1988); Pandey *et al.* (1999); El-Masry *et al.* (2000); Samadhiya & Halve (2001); Siddiqui *et al.* (2006).

Experimental

Crystal data	
$C_{17}H_{18}Cl_2N_2O$	b = 18.6396 (6) Å
$M_r = 337.23$	c = 12.6378 (4) Å
Monoclinic, $P2_1/c$	$\beta = 104.157 \ (3)^{\circ}$
a = 7.1729 (2) Å	V = 1638.36 (9) Å ³

Z = 4	
Μο Κα	radiati
$\mu = 0.40$	0 mm ⁻

on

Data collection

Oxford Diffraction Gemini R CCD	17605 measured reflections
diffractometer	5491 independent reflections
Absorption correction: multi-scan	2626 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.034$
Diffraction, 2007)	
$T_{\min} = 0.720, \ T_{\max} = 0.927$	

T = 296 K

 $0.53 \times 0.25 \times 0.19 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 202 parameters $wR(F^2) = 0.120$ H-atom parameters constrainedS = 0.98 $\Delta \rho_{max} = 0.28$ e Å⁻³5491 reflections $\Delta \rho_{min} = -0.31$ e Å⁻³

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D-H\cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1 - H1O \cdots N1$	0.82	1.89	2.6139 (16)	147

Data collection: *CrysAlisPro* (Oxford Diffraction, 2007); cell refinement: *CrysAlisPro*; data reduction: *CrysAlisPro*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

MTS thanks the Sambhram Institute of Technology for the use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2061).

References

- Agarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). *Indian J. Chem. Sect. B*, **22**, 308–310.
- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Vijesh, A. M. & Narayana, B. (2007). Acta Cryst. E63, 03748.
- Büyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1996–o1998.
- El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). *Molecules*, 5, 1429–1438.
- Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.
- Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. **3**, 209–213.
- Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.
- Oxford Diffraction (2007). *CrysAlisPro* (Version 171.31.8) and *CrysAlis RED* (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). *Il Farmaco*, **54**, 624–628.
- Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119-122.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). *Molecules*, **11**, 206–211.

- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345–349.
- Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, 0936-0938.

Acta Cryst. (2007). E63, o4592-o4593 [doi:10.1107/S1600536807055791]

2-[(Z)-(2,5-Dichlorophenyl)iminomethyl]-5-(diethylamino)phenol

J. P. Jasinski, R. J. Butcher, B. Narayana, M. T. Swamy and H. S. Yathirajan

Comment

Schiff bases are synthesized from an aromatic amine and a carbonyl compound by a nucleophilic addition reaction. They are used as substrates in the preparation of number of biologically active compounds (Siddiqui *et al.*, 2006). Some Schiff base derivatives are also known to have activities such as antimicrobial (El-Masry *et al.*, 2000; Pandey *et al.*, 1999), antifungal (Singh & Dash, 1988; Varma *et al.*, 1986), antitumor (Hodnett & Dunn, 1970; Misra *et al.*, 1981; Agarwal *et al.*, 1983) and as herbicides (Samadhiya & Halve, 2001). The crystal structures of (*E*)-2-hydroxy-5-methyl-3-[(4-methyl-2 pyridyl)iminomethyl] benzaldehyde (Büyükgüngör *et al.*, 2007), (*E*)-2-hydroxy-5-methyl-3-[(2-pyridylimino) methyl]benzaldehyde (Odabaşoğlu *et al.*, 2007), 1-(4-{[(*E*)-(4-diethylamino-2-hydroxy phenyl)methylene]amino} phenyl)ethanone (Yathirajan *et al.*, (2007), 2-{(*E*)-[(2-chloro-5-nitrophenyl)imino]methyl}-5- (diethylamino)phenol (Butcher *et al.*, 2007) have been reported. A new Schiff base, (I), C₁₇H₁₈Cl₂N₂O is prepared and its crystal structure is reported.

The angle between the mean planes of the 2,5-dichlorophenyl-imino and phenol groups is 19.5 (5)° Fig. 1). The two ethyl groups adopt a *syn*-clinal conformation [C11—N2—C14—C15 = $-87.9 (2)^\circ$; C11—N2—C16—C17 = $-87.58 (19)^\circ$]. Crystal packing is stabilized by intermolecular π stacking interactions between $Cg1^i - \pi$ orbitals of nearby 2,5-dichlorolphenyl rings [$Cg1 \cdots Cg1 = 3.860 (8)$ Å; Cg1 = center of gravity of the 2,5-dichlorophenyl ring (Fig. 2)]. The molecules are aligned in an inverted pattern along the *c* axis with the with the 2,5-dichlorophenyl rings stacked obliquely parallel to the *ac* face of the unit cell (Fig. 3). Intramolecular hydrogen bonding interactions [O1—H10…N1] between the phenol hydrogen atom and imino nitrogen atom provides additional crystal stability within the asymmetric unit. [i = 2 - x, -y, 2 - z].

Experimental

A mixture of 2,5-dichloroaniline (1.62 g, 0.01 mol) and 4-(diethylamino)-2-hydroxybenzaldehyde (1.93 g, 0.01 mol) in 30 ml of ethanol containing 2 drops of 4 *M* sulfuric acid was refluxed for about 7 h (Fig. 4). On cooling, the solid separated was filtered and recrystallized from acetone (m.p.: 397–401 K). Analysis found: C 60.46, H 5.32, N 8.24%; $C_{17}H_{18}C_{12}N_{2}O$ requires: C 60.54, H 5.38, N 8.31%.

Refinement

The hydroxyl atom (H10) was located in a difference Fourier map and along with all other H atoms were placed in their calculated positions and then refined using the riding model with O—H = 0.82 Å and C—H = 0.93 to 0.97 Å, and with $U_{iso}(H) = 1.19-1.49U_{eq}(C, O)$.

Figures

Fig. 1. Molecular structure of the title compound, showing atom labeling and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular O—H···N hydrogen bond.

Fig. 3. Packing diagram of the title compound, viewed down the b axis. Dashed lines indicate intramolecular O—H···N hydrogen bonds.

Fig. 4. Synthetic scheme for $C_{17}H_{18}Cl_2N_2O$.

2-[(Z)-(2,5-Dichlorophenyl)iminomethyl]-5-(diethylamino)phenol

Crystal data	
C ₁₇ H ₁₈ Cl ₂ N ₂ O	$F_{000} = 704$
$M_r = 337.23$	$D_{\rm x} = 1.367 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4869 reflections
a = 7.1729 (2) Å	$\theta = 4.7 - 32.5^{\circ}$
b = 18.6396 (6) Å	$\mu = 0.40 \text{ mm}^{-1}$
c = 12.6378 (4) Å	T = 296 K
$\beta = 104.157 \ (3)^{\circ}$	Thick needle, pale yellow
$V = 1638.36 (9) \text{ Å}^3$	$0.53 \times 0.25 \times 0.19 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Gemini R CCD	5401 in dan an dant nafle stiene
diffractometer	5491 independent reflections

Radiation source: fine-focus sealed tube	2626 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{max} = 32.5^{\circ}$
T = 296 K	$\theta_{\min} = 4.7^{\circ}$
ϕ and ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$k = -27 \rightarrow 27$
$T_{\min} = 0.720, \ T_{\max} = 0.927$	$l = -18 \rightarrow 19$
17605 measured reflections	

Re	fine	2m	en	t
m	inc			r

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.055P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.98	$(\Delta/\sigma)_{\rm max} = 0.003$
5491 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
202 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

					. 07	
Fractional atomic coordinates a	nd isotropic or a	anivalant isotropic o	isnlacomont i	naramators l	(14	
	ia isoiropic or e	диглиет изопори и	ιδριάζεπιεπι μ	ourumeters (л	,

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.43274 (6)	0.45456 (3)	0.77923 (4)	0.06735 (16)
Cl2	-0.37011 (6)	0.41423 (3)	0.46310 (4)	0.06539 (16)
01	0.30792 (15)	0.59856 (7)	0.95939 (10)	0.0573 (3)
H1O	0.2780	0.5722	0.9060	0.069*
N1	0.07935 (18)	0.52207 (6)	0.80838 (10)	0.0435 (3)
N2	0.0292 (2)	0.73892 (7)	1.19527 (11)	0.0532 (3)
C1	0.0490 (2)	0.47783 (7)	0.71617 (12)	0.0398 (3)
C2	0.2079 (2)	0.44459 (8)	0.69148 (13)	0.0443 (4)
C3	0.1895 (3)	0.40261 (9)	0.59958 (14)	0.0547 (4)

H3A	0.2976	0.3812	0.5849	0.066*
C4	0.0108 (3)	0.39229 (9)	0.52911 (14)	0.0539 (4)
H4A	-0.0033	0.3636	0.4674	0.065*
C5	-0.1452 (2)	0.42544 (8)	0.55252 (12)	0.0458 (4)
C6	-0.1297 (2)	0.46767 (8)	0.64337 (12)	0.0433 (3)
H6A	-0.2385	0.4895	0.6564	0.052*
C7	-0.0578 (2)	0.53797 (8)	0.85377 (12)	0.0441 (4)
H7A	-0.1774	0.5166	0.8277	0.053*
C8	-0.0324 (2)	0.58710 (8)	0.94251 (12)	0.0411 (3)
C9	0.1485 (2)	0.61728 (8)	0.99181 (12)	0.0422 (3)
C10	0.1682 (2)	0.66657 (8)	1.07560 (13)	0.0474 (4)
H10A	0.2889	0.6856	1.1070	0.057*
C11	0.0095 (2)	0.68848 (8)	1.11419 (12)	0.0439 (4)
C12	-0.1712 (2)	0.65751 (8)	1.06588 (13)	0.0484 (4)
H12A	-0.2790	0.6707	1.0899	0.058*
C13	-0.1882 (2)	0.60832 (8)	0.98419 (13)	0.0474 (4)
H13A	-0.3081	0.5880	0.9548	0.057*
C14	0.2107 (3)	0.77568 (9)	1.24016 (14)	0.0550 (4)
H14A	0.1839	0.8229	1.2650	0.066*
H14B	0.2776	0.7820	1.1828	0.066*
C15	0.3403 (3)	0.73581 (11)	1.33400 (16)	0.0708 (5)
H15A	0.4551	0.7632	1.3618	0.106*
H15B	0.3737	0.6901	1.3090	0.106*
H15C	0.2746	0.7288	1.3909	0.106*
C16	-0.1285 (3)	0.75621 (9)	1.24523 (14)	0.0548 (4)
H16A	-0.0757	0.7719	1.3197	0.066*
H16B	-0.2035	0.7132	1.2477	0.066*
C17	-0.2591 (3)	0.81395 (10)	1.18432 (16)	0.0647 (5)
H17A	-0.3574	0.8245	1.2217	0.097*
H17B	-0.3177	0.7976	1.1117	0.097*
H17C	-0.1855	0.8565	1.1807	0.097*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0356 (2)	0.1007 (4)	0.0625 (3)	0.0009 (2)	0.00571 (19)	-0.0005 (2)
Cl2	0.0521 (3)	0.0786 (3)	0.0573 (3)	-0.0096 (2)	-0.0023 (2)	-0.0120 (2)
O1	0.0354 (6)	0.0763 (8)	0.0580 (8)	0.0022 (5)	0.0073 (5)	-0.0187 (6)
N1	0.0392 (7)	0.0453 (7)	0.0430 (7)	0.0010 (6)	0.0047 (5)	-0.0007 (5)
N2	0.0458 (8)	0.0567 (8)	0.0551 (9)	0.0044 (6)	0.0086 (6)	-0.0122 (6)
C1	0.0394 (8)	0.0400 (7)	0.0390 (8)	-0.0030 (6)	0.0077 (6)	0.0033 (6)
C2	0.0343 (8)	0.0548 (9)	0.0433 (9)	-0.0019 (7)	0.0088 (6)	0.0063 (7)
C3	0.0462 (10)	0.0688 (11)	0.0533 (10)	0.0061 (8)	0.0202 (8)	0.0015 (8)
C4	0.0577 (11)	0.0601 (10)	0.0461 (10)	-0.0042 (9)	0.0170 (8)	-0.0085 (7)
C5	0.0420 (9)	0.0507 (9)	0.0420 (9)	-0.0074 (7)	0.0048 (7)	0.0000 (7)
C6	0.0381 (8)	0.0455 (8)	0.0455 (9)	0.0012 (7)	0.0088 (6)	0.0006 (6)
C7	0.0380 (8)	0.0453 (8)	0.0455 (9)	-0.0056 (7)	0.0038 (6)	0.0021 (7)
C8	0.0370 (8)	0.0433 (8)	0.0412 (8)	-0.0031 (6)	0.0065 (6)	0.0035 (6)

С9	0.0349 (8)	0.0453 (8)	0.0436 (8)	0.0038 (7)	0.0043 (6)	0.0028 (6)
C10	0.0358 (8)	0.0533 (9)	0.0486 (9)	-0.0021 (7)	0.0017 (7)	-0.0024 (7)
C11	0.0425 (9)	0.0440 (8)	0.0424 (9)	0.0035 (7)	0.0048 (7)	0.0021 (6)
C12	0.0396 (9)	0.0541 (9)	0.0526 (10)	0.0017 (7)	0.0134 (7)	0.0006 (7)
C13	0.0382 (8)	0.0518 (9)	0.0518 (10)	-0.0090 (7)	0.0103 (7)	-0.0022 (7)
C14	0.0587 (11)	0.0498 (9)	0.0528 (10)	-0.0009 (8)	0.0065 (8)	-0.0075 (7)
C15	0.0641 (12)	0.0752 (12)	0.0644 (12)	0.0043 (10)	-0.0014 (10)	-0.0011 (10)
C16	0.0593 (11)	0.0566 (10)	0.0490 (10)	0.0041 (8)	0.0144 (8)	-0.0022 (7)
C17	0.0571 (11)	0.0673 (11)	0.0693 (12)	0.0124 (9)	0.0149 (9)	0.0008 (9)
Geometric paran	neters (Å. °)					
C_{11} C_{2}		1 7203 (16)	C	C9	1.41	1 (2)
Cl2 Cl2 C5		1.7293 (10)	C0		1.41	1(2)
C12 - C3		1.7412(10) 1.3516(17)		-C10	1.38	(2)
01		0.8200		0—СП 0 H10A	0.03	00
N1 C7		1.2885(10)		1 C12	0.95	4 (2)
N1 - C7		1.2885 (19)		1 - C12	1.41	4(2)
N1 - C1		1.4003(18) 1.372(2)		2—С13 2 H12A	1.30	00
N2—C14		1.372(2) 1.457(2)		2—1112А 2 H12A	0.93	00
N2-C16		1.457(2) 1.461(2)		6—015	0.95	1(2)
C1 - C6		1.401 (2)		4 С15 И—Н14 А	0.97	1(2)
C1 - C2		1.398 (2)		4—H14B	0.97	00
$C^2 - C^3$		1.390(2)	C1	5—H15A	0.96	00
C3—C4		1 384 (2)	C1	5—H15B	0.96	00
C3—H3A		0.9300	C1	5—H15C	0.96	00
C4—C5		1.372 (2)	C1	6—C17	1.50	8 (2)
C4—H4A		0.9300	C1	6—H16A	0.97	00
C5—C6		1.374 (2)	C1	6—H16B	0.97	00
С6—Н6А		0.9300	C1	7—H17A	0.96	00
С7—С8		1.425 (2)	C1	7—H17B	0.96	00
С7—Н7А		0.9300	C1	7—Н17С	0.96	00
C8—C13		1.404 (2)				
С9—01—Н1О		109.5	C1	1—C10—H10A	119.	4
C7—N1—C1		121.73 (13)	N2		120.	95 (14)
C11—N2—C14		122.14 (14)	N2		121.	22 (14)
C11—N2—C16		121.65 (14)	C1	0—C11—C12	117.	83 (14)
C14—N2—C16		116.15 (14)	C1	3—C12—C11	120.	25 (15)
C6—C1—C2		117.40 (14)	C1	3—С12—Н12А	119.	9
C6-C1-N1		123.98 (13)	C1	1—C12—H12A	119.	9
C2-C1-N1		118.53 (13)	C1	2—С13—С8	122.	81 (15)
C3—C2—C1		121.60 (15)	C1	2—С13—Н13А	118.	6
C3—C2—Cl1		118.88 (12)	C8		118.	6
C1—C2—Cl1		119.51 (12)	N2		113.	20 (15)
C2—C3—C4		120.22 (15)	N2		108.	9
С2—С3—НЗА		119.9	C1	5—C14—H14A	108.	9
С4—С3—НЗА		119.9	N2	—C14—H14B	108.	9
C5—C4—C3		118.33 (15)	C1	5—C14—H14B	108.	9
С5—С4—Н4А		120.8	H1	4A—C14—H14B	107.	8

С3—С4—Н4А	120.8	C14—C15—H15A	109.5		
C4—C5—C6	122.32 (15)	C14—C15—H15B	109.5		
C4—C5—Cl2	118.75 (13)	H15A—C15—H15B	109.5		
C6—C5—Cl2	118.93 (12)	C14—C15—H15C	109.5		
C5—C6—C1	120.12 (14)	H15A—C15—H15C	109.5		
С5—С6—Н6А	119.9	H15B—C15—H15C	109.5		
С1—С6—Н6А	119.9	N2—C16—C17	112.77 (14)		
N1—C7—C8	122.27 (14)	N2—C16—H16A	109.0		
N1—C7—H7A	118.9	С17—С16—Н16А	109.0		
С8—С7—Н7А	118.9	N2—C16—H16B	109.0		
C13—C8—C9	116.88 (14)	C17—C16—H16B	109.0		
C13—C8—C7	121.09 (14)	H16A—C16—H16B	107.8		
C9—C8—C7	122.03 (14)	С16—С17—Н17А	109.5		
O1—C9—C10	117.90 (13)	C16—C17—H17B	109.5		
O1—C9—C8	121.19 (13)	H17A—C17—H17B	109.5		
C10—C9—C8	120.91 (14)	C16—C17—H17C	109.5		
C9—C10—C11	121.29 (14)	H17A—C17—H17C	109.5		
С9—С10—Н10А	119.4	H17B—C17—H17C	109.5		
C7—N1—C1—C6	23.4 (2)	C13—C8—C9—C10	-1.4 (2)		
C7—N1—C1—C2	-160.16 (14)	C7—C8—C9—C10	177.95 (14)		
C6—C1—C2—C3	-0.7 (2)	O1-C9-C10-C11	-179.71 (14)		
N1—C1—C2—C3	-177.40 (14)	C8—C9—C10—C11	-0.2 (2)		
C6—C1—C2—Cl1	-179.43 (11)	C14—N2—C11—C10	4.2 (2)		
N1—C1—C2—Cl1	3.92 (18)	C16—N2—C11—C10	-172.72 (15)		
C1—C2—C3—C4	-0.2 (2)	C14—N2—C11—C12	-175.03 (15)		
Cl1—C2—C3—C4	178.53 (13)	C16—N2—C11—C12	8.0 (2)		
C2—C3—C4—C5	0.8 (2)	C9-C10-C11-N2	-178.16 (14)		
C3—C4—C5—C6	-0.5 (2)	C9-C10-C11-C12	1.1 (2)		
C3—C4—C5—Cl2	178.80 (12)	N2-C11-C12-C13	178.94 (15)		
C4—C5—C6—C1	-0.4 (2)	C10-C11-C12-C13	-0.3 (2)		
Cl2—C5—C6—C1	-179.72 (11)	C11—C12—C13—C8	-1.4 (2)		
C2—C1—C6—C5	1.0 (2)	C9—C8—C13—C12	2.2 (2)		
N1—C1—C6—C5	177.46 (13)	C7—C8—C13—C12	-177.13 (15)		
C1—N1—C7—C8	-175.23 (13)	C11—N2—C14—C15	-87.9 (2)		
N1—C7—C8—C13	174.32 (14)	C16—N2—C14—C15	89.23 (18)		
N1—C7—C8—C9	-5.0 (2)	C11—N2—C16—C17	-87.58 (19)		
C13—C8—C9—O1	178.08 (14)	C14—N2—C16—C17	95.31 (19)		
C7—C8—C9—O1	-2.6 (2)				
Hydrogen-bond geometry (Å, °)					

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
01—H1O…N1	0.82	1.89	2.6139 (16)	147

